The Gilbane Advisor

Curated for content, computing, and digital experience professionals

Page 195 of 930

How long does it take to develop a mobile app?

We have covered and written about the issues enterprises need to consider when planning to develop a mobile app, especially on choosing between native apps, mobile web apps (HTML5, etc.), or a hybrid approach that includes elements of each. And have discussed some of the choices / factors that would have an effect on the time required to bring an app to market, but made no attempt to advise or speculate on how long it should take to “develop a mobile app”. This is not a question with a straightforward answer as any software development manager will tell you.

There are many reasons estimating app development time is difficult, but there are also items outside of actual coding that need to be accounted for. For example, a key factor often not considered in measuring app development is the time involved to train or hire for skills. Since most organizations already have experience with standards such as HTML and CSS developing mobile web apps should be, ceteris paribus, less costly and quicker than developing a native app. This is especially true when the app needs to run on multiple devices with different APIs using different programing languages on multiple mobile (and possibly forked) operating systems. But there are often appealing device features that require native code expertise, and even using a mobile development framework which deals with most of this complexity requires learning something new.

App development schedules can also be at the mercy of app store approvals and not-always-predictable operating system updates.

As unlikely as it is to come up with a meaningful answer to the catchy (and borrowed) title of this post, executives need good estimates of the time and effort in developing specific mobile apps. But experience in developing mobile apps is still slim in many organizations and more non-technical managers are now involved in approving and paying for app development. So even limited information on length of effort can provide useful data points.

I found the survey that informed the Visual.ly infographic below via ReadWrite at How Long Does It Take To Build A Native Mobile App? [InfoGraphic]). It involved 100 iOS, Android and HTML5 app developers and was done by market research service AYTM for Kinvey, provider of a cloud backend platform for app developers.

Their finding? Developing an iOS or Android app takes 18 weeks. I didn’t see the survey questions so don’t know whether whether 18 weeks was an average of actual developments, opinions on what it should take, or something else.

Of course there are simple apps that can be created in a few days and some that will take much longer, but in either case the level of effort is almost always underestimated. Even with all the unanswered questions about resources etc., the infographic raises, the 18 week finding may helpfully temper somebody’s overly optimistic expectations.

 

Launching Your Search for Enterprise Search Fundamentals

It’s the beginning of a new year and you are tasked with responsibility for your enterprise to get top value from the organization’s information and knowledge assets. You are the IT applications specialist assigned to support individual business units with their technology requests. You might encounter situations similar to these:

  • Marketing has a major initiative to re-write all product marketing pieces.
  • Finance is grappling with two newly acquired companies whose financial reports, financial analyses, and forecasts are scattered across a number of repositories.
  • Your Legal department has a need to categorize and analyze several thousand “idea records” that came from the acquired companies in order to be prepared for future work, patenting new products.
  • Research and development is attempting to categorize, and integrate into a single system, R&D reports from an existing repository with those from the acquisitions.
  • Manufacturing requires access to all schematics for eight new products in order to refine and retool manufacturing processes and equipment in their production area.
  • Customer support demands just-in-time retrieval and accuracy to meet their contractual obligations to tier-one customers, often from field operations, or while in transit to customer sites. The latter case often requires retrieval of a single, unique piece of documentation.

All of these groups have needs, which if not met present high risk or even exposure to lawsuits from clients or investors. You have only one specialist on staff who has had two years of experience with a single search engine, but who is currently deployed to field service operations.

Looking at just these few examples we can see that a number of search related technologies plus human activities may be required to meet the needs of these diverse constituents. From finding and assembling all financial materials across a five-year time period for all business units, to recovering scattered and unclassified emails and memos that contain potential product ideas, the initiative may be huge. A sizable quantity of content and business structural complexity may require a large scale effort just to identify all possible repositories to search for. This repository identifying exercise is a problem to be solved before even thinking about the search technologies to adopt for the “finding” activity.

Beginning the development of a categorizing method and terminology to support possible “auto-categorization” might require text mining and text analysis applications to assess the topical nomenclature and entity attributes that would make a good starting point. These tools can be employed before the adoption of enterprise search applications.

Understanding all the “use-cases” for which engineers may seek schematics in their re-design and re-engineering of a manufacturing plant is essential to selecting the best search technology for them and testing it for deployment.

The bottom line is there is a lot more to know about content and supporting its accessibility with search technology than acquiring the search application. Furthermore, the situations that demand search solutions within the enterprise are far different, and their successful application requires far greater understanding of user search expectations than Web searching for a product or general research on a new topic.

To meet the full challenge of providing the technologies and infrastructure that will deliver reliable and high value information and knowledge when and where required, you must become conversant with a boatload of search related topics. So, where do you begin?

A new primer, manageable in length and logical in order has just been published. It contains the basics you will need to understand the enterprise context for search. A substantive list of reading resources, a glossary and vendor URL list round out the book. As the author suggests, and I concur, you should probably begin with Chapter 12, two pages that will ground you quickly in the key elements of your prospective undertaking.

What is the book? Enterprise Search (of course) by Martin White, O’Reilly Media, Inc., Sebastopol, CA. © 2013 Martin White. 192p. ISBN: 978-1-449-33044-6. Also available as an online edition at: http://my.safaribooksonline.com/book/databases/data-warehouses/9781449330439

Customer experiences, communications, and analytics

three epicenters of innovation in modern marketing
I recently discovered Scott Brinker’s Chief Marketing Technologist blog and recommend it as a useful resource for marketers. The Venn diagram above is from a recent post, 3 epicenters of innovation in modern marketing. It was the Venn diagram that first grabbed my attention because I love Venn diagrams as a communication tool, it reminded me of another Venn diagram well-received at the recent Gilbane Conference, and most of the conference discussions map to someplace in the illustration.

As good as the graphic is on its own, you should read Scott’s post and see what he has to say about the customer experience “revolution”.

Lest you think Scott is a little too blithe in his acceptance of the role of big data, see his The big data bubble in marketing — but a bigger future, where the first half of the (fairly long) post talks about all the hype around big data. But you should read the full post because he is right on target in describing the role of big data in marketing innovation, and in his conclusion that data-driven organizations will need to make use of big data though these data-driven and data-savvy organizations will take some time to build.

So don’t let current real or perceived hype about the role of big data in marketing lead you to discount its importance – it’s a matter of when, not if. “When” is not easy to predict, but will certainly be different depending on an organizations’ resources and ability to deal with complexity, and organizational and infrastructure changes.

Enterprise Search Strategies: Cultivating High Value Domains

At the recent Gilbane Boston Conference I was happy to hear many remarks positioning and defining “Big Data” and the variety of comments. Like so much in the marketing sphere of high tech, answers begin with technology vendors but get refined and parsed by analysts and consultants, who need to set clear expectations about the actual problem domain. It’s a good thing that we have humans to do that defining because even the most advanced semantics would be hard pressed to give you a single useful answer.

I heard Sue Feldman of IDC give a pretty good “working definition” of big data at the Enterprise Search Summit in May, 2012. To paraphrase is was:

  • > 100 TB up to petabytes, OR
  • > 60% growth a year of unstructured and unpredictable content, OR
  • Ultra high streaming content

But we then get into debates about differentiating data from unstructured content when using a phrase like “big data” and applying it to unstructured content, which knowledge strategists like me tend to put into a category of packaged information. But never mind, technology solution providers will continue to come up with catchy buzz phrases to codify the problem they are solving, whether it makes semantic sense or not.

What does this have to do with enterprise search? In short, “findability” is an increasingly heavy lift due to the size and number of content repositories. We want to define quality findability as optimal relevance and recall.

A search technology era ago, publishers, libraries, content management solution providers were focused on human curation of non-database content, and applying controlled vocabulary categories derived from decades of human managed terminology lists. Automated search provided highly structured access interfaces to what we now call unstructured content. Once this model was supplanted by full text retrieval, and new content originated in electronic formats, the proportion of human categorized content to un-categorized content ballooned.

Hundreds of models for automatic categorization have been rolled out to try to stay ahead of the electronic onslaught. The ones that succeed do so mostly because of continued human intervention at some point in the process of making content available to be searched. From human invented search algorithms, to terminology structuring and mapping (taxonomies, thesauri, ontologies, grammar rule bases, etc.), to hybrid machine-human indexing processes, institutions seek ways to find, extract, and deliver value from mountains of content.

This brings me to a pervasive theme from the conferences I have attended this year, the synergies among text mining, text analytics, extractor/transformer/loader (ETL), and search technologies. These are being sought, employed and applied to specific findability issues in select content domains. It appears that the best results are delivered only when these criteria are first met:

  • The business need is well defined, refined and narrowed to a manageable scope. Narrowing scope of information initiatives is the only way to understand results, and gain real insights into what technologies work and don’t work.
  • The domain of content that has high value content is carefully selected. I have long maintained that a significant issue is the amount of redundant information that we pile up across every repository. By demanding that our search tools crawl and index all of it, we are placing an unrealistic burden on search technologies to rank relevance and importance.
  • Apply pre-processing solutions such as text-mining and text analytics to ferret out primary source content and eliminate re-packaged variations that lack added value.
  • Apply pre-processing solutions such as ETL with text mining to assist with content enhancement, by applying consistent metadata that does not have a high semantic threshold but will suffice to answer a large percentage of non-topical inquiries. An example would be to find the “paper” that “Jerry Howe” presented to the “AMA” last year.

Business managers together with IT need to focus on eliminating redundancy by utilizing automation tools to enhance unique and high-value content with consistent metadata, thus creating solutions for special audiences needing information to solve specific business problems. By doing this we save the searcher the most time, while delivering the best answers to make the right business decisions and innovative advances. We need to stop thinking of enterprise search as a “big data,” single engine effort and instead parse it into “right data” solutions for each need.

HTML5 Definition Complete, W3C Moves to Interoperability Testing and Performance

HTML5_Logo_128The W3C announced today that the HTML5 definition is complete, and on schedule to be finalized in 2014. This is excellent news for the future of the open Web, that is, all of us. If you were involved in discussions about mobile development strategies at our recent conference you’ll want to check out all the details at http://dev.w3.org/html5/decision-policy/html5-2014-plan.

Moving right along, the HTML Working Group also published the first draft of HTML 5.1 so you can see a little further down the road for planning purposes. See http://www.w3.org/TR/2012/WD-html51-20121217/.

From the W3C newsletter…

W3C published today the complete definition of the “HTML5” and “Canvas 2D” specifications. Though not yet W3C standards, these specifications are now feature complete, meaning businesses and developers have a stable target for implementation and planning. “As of today, businesses know what they can rely on for HTML5 in the coming years, and what their customers will demand,” said Jeff Jaffe, W3C CEO. HTML5 is the cornerstone of the Open Web Platform, a full programming environment for cross-platform applications with access to device capabilities; video and animations; graphics; style, typography, and other tools for digital publishing; extensive network capabilities; and more.

To reduce browser fragmentation and extend implementations to the full range of tools that consume and produce HTML, W3C now embarks on the stage of W3C standardization devoted to interoperability and testing. W3C is on schedule to finalize the HTML5 standard in 2014. In parallel, the W3C community will continue its work on next generation HTML features, including extensions to complement built-in HTML5 accessibility, responsive images, and adaptive streaming.

Integrating External Data & Enhancing Your Prospects

Most companies with IT account teams and account selling strategies have a database in a CRM system and the company records in that database generally have a wide range of data elements and varying degrees of completeness. Beyond the basic demographic information, some records are more complete than others with regard to providing information that can tell the account team more about the drivers of sales potential. In some cases, this additional data may have been collected by internal staff, in other cases, it may be the result of purchased data from organizations like Harte-Hanks, RainKing, HG Data or any number of custom resources/projects.

There are some other data elements that can be added to your database from freely available resources. These data elements can enhance the company records by showing which companies will provide better opportunities. One simple example we use in The Global 5000 database is the number of employees that have a LinkedIn profile. This may be an indicator that companies with a high percentage of social media users are more likely to purchase or use certain online services. That data is free to use. Obviously, that indicator does not work for every organization and each company needs to test the data correlation between customers and the attributes, environment or product usage.

Other free and interesting data can be found in government filings. For example, any firm with benefit and 401k plans must file federal funds and that filing data is available from the US government. A quick scan of the web site data.gov  shows a number of options and data sets available for download and integration into your prospect database. The National Weather Center, for example, provides a number of specific long term contracts which can be helpful for anyone selling to the agriculture market.

There are a number things that need to be considered when importing and appending or modeling external data. Some of the key aspects include:

  • A match code or record identifier whereby external records can be matched to your internal company records. Many systems use the DUNS number from D&B rather than trying to match on company names which can have too many variations to be useful.
  • The CRM record level needs to be established so that the organization is focused on companies at a local entity level or at the corporate HQ level.  For example, if your are selling multi-national network services, having lots of site recrods is probably not helpful when you most likely have to sell at the corporate level.
  • De-dupe your existing customers. When acquiring and integrating an external file — those external sources won’t know your customer set and you will likely be importing data about your existing customers. If you are going to turn around and send this new, enhanced data to your team, it makes sense to identify or remove existing clients from that effort so that your organization is not marketing to them all over again.
  • Identifying the key drivers that turn the vast sea of companies into prospects and then into clients will provide a solid list of key data attributes that can be used to append to existing records.  For example, these drivers may include elements such as revenue growth, productivity measures such as revenue per employee, credit ratings, multiple locations or selected industries.

In this era of marketing sophistication with increasing ‘tons’ of Big Data being available and sophisticated analytical tools coming to market every company has the opportunity to enhance their internal data by integrating external data and going to market armed with more insight than ever before.

Learn more about more the Global 5000 database

 

Technology and IT Spending Metric Options

When planning for global market growth and sizing up the opportunities in various countries, there is often a lack of data available from various industry sources. One could look at GDP figures or population data by country – both of those have some limitations. A better gauge might be to look at those business entities that generate the most revenue in each country as they will help contribute to other businesses in the geography and in general, raise the level of B2B activity overall.

Diving into the data of the Global 5000 companies – the 5000 largest companies in the world based on revenue – we find a couple of different ways to help guide your estimates of market size and rank order.

The first list is the top 10 countries by number of firms in our Global 5000 database with HQ in the country.

  • USA – 2148
  • Japan – 334
  • China – 221
  • UK – 183
  • Canada – 124
  • Germany – 98
  • France – 84
  • Australia – 77
  • India – 76
  • Italy – 65

For each company in the database, there is an estimate for the amount spent on IT – both internal and external costs. When we take those amounts for each country and look at the average IT spending for these leading firms, we see a different order of countries which would also prove to be attractive targets.

  • France – $902 million per company
  • Germany
  • Netherlands
  • Spain
  • Venezuela
  • Italy
  • China
  • Switzerland
  • South Korea
  • New Zealand – $545 million per company

Of course, all these companies are the biggest of the big and not all companies in that country will spend at that level — but it is indicative of the relative IT spending on a country basis and again shows some of the potential for attractive markets as you eye global opportunities.

Learn more about more the Global 5000 database

« Older posts Newer posts »

© 2025 The Gilbane Advisor

Theme by Anders NorenUp ↑