Mining content for facts and information relationships is a focal point of many semantic technologies. Among the text analytics tools are those for mining content in order to process it for further analysis and understanding, and indexing for semantic search. This will move enterprise search to a new level of research possibilities.
Research for a forthcoming Gilbane report on semantic software technologies turned up numerous applications used in the life sciences and publishing. Neither semantic technologies nor text mining are mentioned in this recent article Rare Sharing of Data Leads to Progress on Alzheimer’s in the New York Times but I am pretty certain that these technologies had some role in enabling scientists to discover new data relationships and synthesize new ideas about Alzheimer’s biomarkers. The sheer volume of data from all the referenced data sources demands computational methods to distill and analyze.
One vertical industry poised for potential growth of semantic technologies is the energy field. It is a special interest of mine because it is a topical area in which I worked as a subject indexer and searcher early in my career. Beginning with the 1st energy crisis, oil embargo of the mid-1970s, I worked in research organizations that involved both fossil fuel exploration and production, and alternative energy development.
A hallmark of technical exploratory and discovery work is the time gaps between breakthroughs; there are often significant plateaus between major developments. This happens if research reaches a point that an enabling technology is not available or commercially viable to move to the next milestone of development. I observed that the starting point in the quest for innovative energy technologies often began with decades-old research that stopped before commercialization.
Building on what we have already discovered, invented or learned is one key to success for many “new” breakthroughs. Looking at old research from a new perspective to lower costs or improve efficiency for such things as photovoltaic materials or electrochemical cells (batteries) is what excellent companies do.
How does this relate to semantic software technologies and data mining? We need to begin with content that was generated by research in the last century; much of this is just now being made electronic. Even so, most of the conversion from paper, or micro formats like fîche, is to image formats. In order to make the full transition to enable data mining, content must be further enhanced through optical character recognition (OCR). This will put it into a form that can be semantically parsed, analyzed and explored for facts and new relationships among data elements.
Processing of old materials is neither easy nor inexpensive. There are government agencies, consortia, associations, and partnerships of various types of institutions that often serve as a springboard for making legacy knowledge assets electronically available. A great first step would be having DOE and some energy industry leaders collaborating on this activity.
A future of potential man-made disasters, even when knowledge exists to prevent them, is not a foregone conclusion. Intellectually, we know that energy independence is prudent, economically and socially mandatory for all types of stability. We have decades of information and knowledge assets in energy related fields (e.g. chemistry, materials science, geology, and engineering) that semantic technologies can leverage to move us toward a future of energy independence. Finding nuggets of old information in unexpected relationships to content from previously disconnected sources is a role for semantic search that can stimulate new ideas and technical research.
A beginning is a serious program of content conversion capped off with use of semantic search tools to aid the process of discovery and development. It is high time to put our knowledge to work with state-of-the-art semantic software tools and by committing human and collaborative resources to the effort. Coupling our knowledge assets of the past with the ingenuity of the present we can achieve energy advances using semantic technologies already embraced by the life sciences.