
R E P O R T
G I L B A N E

T H E

Document-Centered Interfaces & Object-Oriented
Programming — How Will They Affect You? Page 2

Documation ’94 Update Page 21

Calendar Of Events Page 22

Topics Covered In Previous & Future Issues Page 23

Publisher:
Publishing Technology
Management, Inc.
Applelink: PTM
(617) 643-8855

Editor:
Frank Gilbane
fgilbane@world.std.com
(617) 643-8855

Subscriptions:
Carolyn Fine
carolyn@world.std.com
(617) 643-8855

Design & Production:
Catherine Maccora
(617) 241-7816

Associate Editor:
Chip Canty
ccanty@world.std.com
(617) 265-6263

Contributing Editor:
Rebecca Hansen
MCI Mail: 4724078
(617) 859-9540

Vol. 1, No. 6
January/February
1994

CONTENTS

o n O p e n I n f o r m a t i o n & D o c u m e n t S y s t e m s

™

It may not seem these two
topics have much to do
with each other at first, but
together they will have a
profound affect on how we

use computers in everyday business environments. You can get a glimpse of where this is
all headed by looking at some existing document management software and operating
system features. In this issue Keith Dawson explains why these two trends are important,
how they relate to each other, and how we can expect their convergence to affect our
development and use of software for business applications.

This issue also sets the stage for a future article analyzing the compound document
architectures that will be vying for dominance in the next generation document
computing environments.

It seems hard to believe, but with this issue we conclude our first
year of publication. It has been an exciting year for us, and we look

forward to another year of keeping you up-to-date on the issues and technology for
managing documents and document information.

In our next (anniversary) issue we will look at how Andersen Consulting helped the State
of Wisconsin Legislature reengineer their entire document workflow and management
process, and put together a document management application that involved
integrating multiple document management products.

We also will begin to report news items relevant to document systems and document
management that we think will be of interest to our readers. You can be sure there will
be a lot of activity in the coming year. Stay tuned!

DOCUMENT-CENTERED USER INTERFACES &
OBJECT-ORIENTED PROGRAMMING — HOW
WILL THEY AFFECT YOU?

ANNIVERSARY ISSUE

The Gilbane Report January/February 1994

The Impetus for Change
• Despite desktop-based graphical user

interfaces, computers are still too hard to use.

• Individual software products have become bloated with functions, such as spell-
checking, that could be shared across applications.

• The number of distinct applications programming calls available today forces program-
mers to specialize and complicates applications development.

• Falling software prices and tight IS budgets also create incentives for greater program-
ming efficiency.

How “Objects” and “Documents” Help
• With object-oriented programming (OOP), the amount of programming needed scales

linearly (not geometrically) with the complexity of the project.

• OOP fights “API overload” by letting programmers build applications from a relatively
small set of high-level objects.

• OOP and document-centered applications allow persons “farther down the skill pyra-
mid” to take on tasks that only programmers can tackle today.

The Document and the Desktop
• In programs based on a desktop metaphor, users must understand how to navigate

through computer’s file system and how to relate files to applications.

• Spurred by innovations in publishing software, many vendors have begun adding
support for various forms of “document-centered” functionality.

• The initiatives taken to date by operating system vendors are largely incompatible; such
lack of standardization has made applications developers slow to support them.

Document-Centered User Interfaces
• Pen-based computers are beginning to expose users to document-centered user

interfaces (DCUI’s).

• Key features to be found in DCUI’s include linking, cross-application “drag & drop”
capability, automatic activation of applications, and location transparency.

• App-lets—mini-applications that “plug into” other programs—are a promising out-
growth of OOP and DCUI technology.

Implications for the Future
• An object management standard, CORBA, promises to help ensure that object-oriented

systems can share applications and objects.

• OOP will force new applications developers and operating systems vendors to negotiate
new relationships, as more core technology is absorbed into OS-level objects.

2

DOCUMENT-CENTERED
USER INTERFACES &
OBJECT-ORIENTED
PROGRAMMING —

HOW WILL THEY
AFFECT YOU?

EXECUTIVE SUMMARY

The Gilbane Report January/February 19943

• DCUI’s and OOP create new opportunities for IS departments to increase productivity
and improve service.

Risks & Costs
• Planning for DCUI’s may uncover ways of using existing document-oriented features in

existing or installed products.

• Early object-oriented operating systems may lack the features needed to re-engineer
applications around DCUI’s.

Conclusions & Recommendations
• Be careful in committing to using a particular OOP environment. Study your own

applications first so that you understand what resources are needed to transform them
into object-oriented programs.

• Support standardization efforts such as COBRA which can help ensure the portability of
applications and objects across platforms and operating systems.

In an exciting new trend in
software design, application
developers today are giving
computer applications the

“look and feel” of books, notebooks, memos and other documents.

The goal behind this movement is to make computers easier to use. But discussing
document-centered user interfaces (DCUI’s) is hard without also addressing object-orient
programming (OOP), a parallel trend whose goal is to make computers easier to program.

For many reasons the computer industry is moving to the object-oriented model, the
programming context in which document-centered interfaces are being developed and
deployed. Soon these two threads will meet in end-user computer environments.
Applications will become customizable and tailorable by any user in ways that today
would require hours, days, or weeks of concentrated, expert programming effort, and
developers will have access to even higher-level facilities from which to construct robust
new applications quickly.

These developments will have both obvious and not-so-obvious implications for
managers of information systems.

Background: The Impetus for Change
Why is the industry both adopting a document-centered applications metaphor and an
object-oriented programming model? Let us outline a number of problems that
characterize the worlds of computer users and developers today, and look briefly at the
ways the trend to objects helps alleviate them.

Computers Are Still Hard to Use
Despite windows, icons, drag-and-drop, and all the other trappings of modern graphical
user interfaces (GUIs), computers still are not simple enough to use. The desktop is
showing its age.

As today’s reigning paradigm, it is certainly a large improvement over cryptic commands
and codes. But in a few years users will have to deal with multimedia documents in
relational and object databases on file systems that span continents. The “desktop” is too

THE DOCUMENT-CENTERED MODEL
AND THE OBJECT-ORIENTED PARADIGM

“… in a few

years users will

have to deal

with multimedia

documents in

relational and

object databases

on file systems

that span

continents.”

The Gilbane Report January/February 19944

small, too narrowly focused to present us with an adequate view of the data universe
through which we will all need to navigate.

Applications are Ballooning
Applications today are chock-full of features that the average user neither needs nor under-
stands. The recent commoditization of software—and the degree to which vendors must
fight for shelf space in a frighteningly narrow sales channel—force developers to cram all
the features that any user may want into the software that every customer has to buy.

As a result the “footprints” of applications have grown—both in the amount of disk space
they consume upon installation and in the amount of memory they need to run. Vendors
can assume little about users’ computing environments. Under today’s model, code that
is needed by many different programs to handle common problems must be duplicated
in, and delivered and installed with, each application.

The result is not only disk- and memory-glut, but more costly applications that take
longer to develop and to test. User frustration goes up as duplicate features proliferate,
many with very different user interfaces. Training burdens increase. Computer users,
having invested in learning one set of capabilities, become specialized and focused on
one environment, reducing their flexibility and that of their enterprise.

API Overload
The term applications programming interface (API) ideally refers only to the set of
programming calls supplied for a particular system.1 Application programmers on most
major operating systems today must contend with up to 5,000 to 7,000 separate API
calls. This number rises as operating systems become more powerful, so unless we adopt
a new development paradigm, we can expect it to climb soon to the neighborhood of
10,000 to 15,000 calls.

Even today the sheer number of API calls represents an unwieldy burden—it makes cross-
platform development increasingly difficult and expensive, and stretches out product
development schedules. “API overload” also forces programmers to become increasingly
specialized, which in turn reduces managers’ flexibility in assigning staff to different
programming projects.

Economic Factors
Non-technical factors, too, put pressure on applications developers to adopt more cost-
efficient development methodologies.

For commercial software developers, one is the price that users are willing to pay for
software. The price of software today is in free-fall. Partly this is because hardware, too, is
cheaper, which influences what users think software “should” cost. Partly, too, it owes to
the rough-and-tumble competitiveness of the PC software market, which, to give just one
example, has now driven the street price of PC database software to under $100.

For in-house IS departments, the cost drivers are shrinking budgets and increasing
demands from users for support. Users—especially those who know enough about PC
software to be dangerously naïve about the true costs of customizing applications—don’t
want to wait weeks or months for access to new features. Competing demands on IS
departments to maintain legacy code or to re-engineer aging but mission-critical
applications have to be reconciled with end-user demands and “downsized” budgets.

1To confuse matters, the term “API” is also sometimes applied to a single call from such a set.

“API overload

also forces

programmers

to become

increasingly

specialized,

which in turn

reduces

managers’

flexibility in

assigning staff

to different

programming

projects.”

The Gilbane Report January/February 19945

How “Objects” and “Documents” Help
But why objects? How does the use of OOP address these problems? And what is the
nature of this synergy between object technology and “documents” and/or DCUI’s?

Let’s look first at objects. Depending on the context, the word “object” can refer to a
component at any level, from the very basic (e.g., an integer) to the large-scale (a
document part, a whole document, or a network server). Object-oriented development
refers to a process of analysis, design, and programming centered on the use of objects
in all phases of a project.

Object orientation promises efficiencies at many levels. Once low-level objects exist,
programmers can use them to construct higher-level objects. Building each successive
level requires about the same effort as the previous one. In other words, development
effort scales linearly with system size, not geometrically as at present.

Document-centered interfaces, on the other hand, represent the whip-end of the
movement to object orientation— a paradigm for presenting to the end user a perspect-
ive on the power and flexibility built into object-oriented applications. Let’s keep that in
mind as we review some of the ways in which object orientation addresses the problems
enumerated above:

Death of the mega-application
Document-centered computing lets us break the huge, category-spanning applications
we know today into smaller functional pieces. There are a number of ways in which this
modularity can help craft smaller, more focused applications for end-users. (See “App-
lets” below, for example.)

New options for software packaging and pricing
Such modularity allows us to re-invent ways of delivering software to users; doing so
promises to help us overcome our current software pricing dilemma. OOP encourages
layered software architectures and standardization at the boundaries between layers. A
more standards-based world encourages innovation and helps smaller, entrepreneurial
developers both (1) by enabling them to attach code to add functionality to more
established software products and (2) by encouraging the proliferation of software
products aimed at smaller “niche” markets.

A way out of “API overload”
Instead of worrying about 10,000 API calls in the C language, a programmer in the future
may only have to deal with a few hundred higher-level objects. This promises to greatly
improve the productivity both of individual programmers and programming teams.
Some object-oriented development environments also run on or across different hard-
ware platforms, further reducing the complexity presented to application developers.

Objects model the real world
To create a business application in object-oriented fashion, one begins by identifying the
“people, places, and things” that are important to the application. Each is then modeled
by software objects as the application is developed. Keeping such a close tie between
business analysis and programming simplifies the task of re-engineering applications,
especially as businesses move critical applications and databases off legacy mainframe
systems and onto more modern technology.

“Once low-level

objects exist…

development

effort scales

linearly with

system size, not

geometrically…”

The Gilbane Report January/February 19946

Helping dissimilar systems work together
Objects hide the details of how they work, presenting instead a simple and consistent
interface to the outside world. Other objects use these interfaces to access the services
that the objects provide. As standards emerge that describe how objects communicate
(see below, “Standards: OMG and CORBA”), it becomes easier for systems with different
software and hardware to cooperate in distributed systems.

Making the best use of programming skills
Object technology promises to reduce demands on business application programmers by
allowing people farther down the skill pyramid (see Figure 1) to build their own
applications using higher-level parts.

IS departments are struggling to meet user demand for new and enhanced applications
while maintaining legacy code, re-engineering applications or introducing client/server
computing models. Once object technology gives these departments the tools and
training they need to produce objects and to combine them into useful applications,
several things can happen: (1) programmers who are not object experts can build
applications by piping together high-level objects; (2) sophisticated end-users can build
their own applications using objects distributed by IS; and (3) the skills of the experts can
be focused more narrowly on lower-level code or more demanding applications;

OOP has also encouraged the development of visually oriented tools with which one can
build applications without traditional programming. Examples of such tools include
Oberon Software’s SynchroWorks and DigiTalk’s Parts.

For all these reasons, many firms have decided already that the benefits of adopting OOP
outweigh the costs of re-designing and re-building applications.

As the 1980’s saw a shift from monolithic computer systems to client/server computing,
the 1990’s will see a further shift to distributed object-based computing and development
paradigms. (See Figure 2) Vendors of operating systems are working to incorporate object-
oriented extensions into their environments. Some are even developing new object-
oriented operating systems from the ground up. (See box, “Leaders in the Move to OOP.”)

Figure 1

Programming

expertise

in an

organization

Object
programming

experts C++,
Smalltalk

MIS business
area expert

programmers

Cobol, C,
Visual
Basic

Advanced business
users

Excel
macros

General users

Object
fabrication

Object
 assembly

Scripting

Drag-
and-
drop

Typical
programming

languages

Typical
activities

Document
 assembly

“Objects hide

the details of

how they work,

presenting

instead a simple

and consistent

interface to the

outside world.”

The Gilbane Report January/February 19947

The Document and the Desktop
In this context, the movement towards document-centered interfaces is a manifestation
of the shift to object orientation—specifically, the part that is visible to end-users.

Before studying DCUI’s and their implications, let us first review the role of documents in
the current desktop-oriented U/I paradigm.

Documents and Applications
The desktop metaphor pioneered by Xerox PARC and commercialized by Apple
dominates user interfaces today. Under this model, the document is the repository of the
user’s work. (The term “document” is itself a metaphor borrowed from the physical
world.) A document can represent something that looks like a traditional book or report;
but it could also represent five pictures, a stack of index cards, a multi-dimensional
spreadsheet, or a film clip with audio.

In this model, both computer users and developers think first of applications, then
documents. Applications are what users buy to get their work done. As a rule, different
applications cooperate and intercommunicate in only rudimentary ways. Applications
know how to display, edit, and print only certain kinds of documents.

Applications have native forms in which to store documents, with some ability to import
and export documents from and to the formats of other applications. The native form is
usually the most efficient, compact, or fine-grained storage format.

Under the desktop model, applications eventually become feature-heavy and evolve into
mega-applications. With each new release, vendors competing for market share feel
compelled to add new features and to make their applications more aware about other
resources or limitations that may characterize a particular computing environment or
problem domain.

As this happens, common facilities that may be needed in many problem spaces are
duplicated in each application. Spelling checkers provide a good example: a different one

System

Users

Terminals

Mainframe
or

minicomputer
Servers

Clients

Monolithic Client /
Server

Distributed
Object

Computing

Objects

1970s, 80s 1980s, 90s 1990s, 00s

Clients

O R B

O R B

Files,
Applications

Figure 2.

The

movement

toward

distributed

object

computing

“Under the

desktop model,

applications

eventually

become feature-

heavy and evolve

into mega-

applications.”

The Gilbane Report January/February 19948

may be included in each and every word processor, presentation application, drawing
package, etc., that users install on their systems. In addition, vendors begin adding
features to undercut competition from vendors with essentially dissimilar products. Word
processors, for example, grow page-layout features; page-layout programs sprout both
drawing and word-processing functions; presentation programs add all of the above, plus
outlining, audio-visual functions, and multi-megabytes of clip art and “clip media.”

The Desktop Operating Environment

While the document may be central to the user’s concerns, it is applications and files that
are central to the desktop view. A weak point of all existing desktop user interfaces is that
at some point they require users to navigate through some representation of the file
system to locate a document or application to launch.

Most of the methods for doing so require some degree of awareness from the user of the
document’s location in the underlying file system.

Any exceptions to this rule result from establishing explicit associations between
applications and documents (files). Various schemes are used in desktop environments
today to accomplish this. Microsoft Windows relies on three-character file-name
extensions and a table of associations between such extensions and various applications.
The ultimate responsibility for filling out this table, and ensuring that it stays up-to-date,
resides with the end-user. The icon used to represent either an application or a document
is also left for the user to assign.

On the Macintosh a more rigorous association of icon, document type, and application is
tracked by means of four-character type and creator codes associated with each file in the
file system. These codes are not normally visible to the user; however, when they get out
of sync, the user may be faced with blank icons and no easy way to identify to what
application a particular document belongs.

Cracks in the Desktop
Some of the earliest challenges to a strict desktop metaphor came from electronic pub-
lishing applications such as Ventura Publisher.

Single-application features that resemble linking and embedding were introduced as early
as the mid-80’s.2 The first version of Ventura Publisher (1986), which ran under the
DR/GEM windowing environment, supported links to external word-processor files. Aldus
PageMaker by the time of version 3.0 (1988) allowed the user to link to graphics files. By
version 4.0 (1990) Aldus had extended support to linking or embedding graphics or text
files, with optional updating if the external files changed. Microsoft Excel by the time of
version 2.0 (1989) supported linking to external spreadsheet files.

Interleaf 5, released in 1991, introduced as Active Documents what we would now call
adaptive dynamic object linking, whereby external events could “call” documents and tell
them to change themselves via a Lisp-based scripting language. Other publishing system
vendors too, including ArborText, Xyvision, Frame/Datalogics, and SoftQuad, have provid-
ed scripting capability for linking to third party products and incorporating distributed
data into documents.

2If we consider cut-and-paste as the simplest form of embedding, we can go back before 1980 to the Apple Lisa and the Xerox
Star.

Document-Centered Features Today
Figure 3 illustrates the development of features supporting a document-centered world-
view.

DDE and OLE

Microsoft introduced a simple flavor of OS-level linking support, called dynamic data
exchange, in the Windows environment in 1990. Microsoft also supported DDE in
Microsoft applications running on the Macintosh once Apple released System 7.0 in
1991. An application vendor using DDE could implement linking and embedding of one
document or part inside another.

Microsoft’s Object Linking and Embedding technology was introduced on Windows in
1991. OLE 1.0 provides for activating another application (in a separate window) from a
part embedded in a document.

OLE 2.0, announced in May 1993, supports in-place activation of linked applications and
drag-and-drop embedding. As such it is a platform on which most of the features of the
document-centered vision could be implemented—at least on a single machine.

Publish and Subscribe

Apple’s current network-wide linking technology is called “Publish and Subscribe” (P&S).

9The Gilbane Report January/February 1994

Static embedding

Dynamic linking
Linked data can be auto
updated, at user’s choice,
when source changes

Location-independent
linking User can move or
rename data source with-
out affecting link’s integrity

Network-aware linking
Source can be non-local to
destination machine

Adaptive dynamic linking
Change to source data
sends message to docu-
ment; logic in document
decides how to respond

Dynamic embedding
Copy of source data in
document updates when
source changes

Framing
Placement only

Invoke owner
Invoke associa-
ted application,
in a separate
window

Invoke editor in
place Invoke an
editor applic-
ation in place in
the document

Browse
Browse
catalogs of
part editors

Macintosh cut &
paste, 1984

DDE
1990

OLE 1
1991

Publish &
Subscribe

1991

Interleaf
5.0, 1991

OLE 2
1993

OpenDoc
1995?

Cairo
1996?

P&S + Apple-
Script
1992

Ventura
Publisher
1.0, 1986

Page-
Maker

3.0, 1988

Pink
1997?

ArborText, SoftQuad,
Xyvision, Frame, …

Li
n

ki
n

g
 F

le
xi

b
ili

ty

Part Integration

Figure 3.

The history

and outlook

for features

supporting

document-

centered

interfaces

The Gilbane Report January/February 1994

Neither DDE-based nor OLE-based embedding on the Macintosh, as implemented in
Microsoft applications, is network-aware: the source application must be present on the
same machine as the application that uses the linked/embedded information.

P&S, however, removes the dependency on a creating application. Once you publish an
edition that represents some information from a document, any other document on the
network can subscribe to the edition without recourse to the original application. When-
ever you change the published information in the original document, the operating
system updates both the edition and all documents that subscribe to it.

AppleScript

Apple’s AppleScript, shipping since 1992, automates the invoking and coordinating of
Macintosh applications across a network. Major components of the Apple environment,
such as the desktop Finder, know how to respond to Apple Events. A number of third-
party applications have been made scriptable as well. A third-party product called
Userland Frontier allows users to knit together such scriptable applications in a
straightforward way.

Visual Basic

Microsoft has announced its future direction for scripting— its Visual Basic language—will
be extended to meet this need. By the time Windows 4.0 (Chicago) ships, users should be
able to program its desktop and file functions using Visual Basic.

Application-Specific Plug-Ins

One early step on the path away from monolithic applications was the introduction of
application-specific plug-ins.3 To support plug-ins, the vendor rearranges the application
architecture so that there is a hub to which the plug-ins can attach, and publishes the
specs for the API that a valid plug-in must satisfy.

Vendors who support plug-ins ordinarily supply several with the product, then work with
cooperating software developers who want to write others.

Dynamic Link Libraries
Microsoft’s Windows environment supports dynamic link libraries, or DLLs. Apple has not
released corresponding functionality, and the uncertainty over Apple’s plans in this area
have kept other vendors’ solutions from becoming established. DLLs depend on the
application knowing where to find the DLL (or on the user putting it in the right place).
Things can break if the user moves or renames a file.

Document-Centered User Interfaces
As operating systems, especially, evolve to support OOP, some users begin to benefit from
the sharing of data, even on desktop-oriented systems (see box, “Are People Using These
Features?”). For most people, however, the first glimpses of truly document-centered user
interfaces are coming courtesy of hand-held “pen” computing systems.

For an example of what document-centered computing might be like for users, let us,
too, consider such a system: AT&T’s PenPoint operating system and user environment.

A First Look: the PenPoint O/S
To use PenPoint today is to be almost completely unaware of applications and files in the
traditional sense. The main interface to PenPoint— called the Notebook— looks like a

10

3Different vendors use different names for this capability. Examples include Quark Xpress’s Xtensions, Adobe Photoshop’s Plug-
Ins, Aldus PageMaker’s Additions, Deneba Canvas’s Tools, Microsoft Word’s Commands, and Microsoft Excel’s Add-Ins.

“… the first

glimpses of truly

document-

centered user

interfaces are

coming courtesy

of hand-held

“pen” computing

systems.”

document divided into sections and pages. A table of contents and margin tabs helps you
get around. Selecting an object brings up whatever software component you need to
work on it: spreadsheet, form, drawing software, etc. Select another object and the
available tools change.

In such an environment, one never needs explicitly to put applications into the
background, switch among running applications, or launch or quit applications. The
applications simply seem to appear when needed (and go away when not).

Objects of any type can be embedded anywhere on a page. The user is never made
aware of files or a file system. No desktop metaphor is provided—only the “document.”

Beneath PenPoint’s document-centered user interface lies an object-oriented operating
system. Application developers use a C interface t the low-level objects provided by the
operating system; users employ a document interface to the high-level objects provided
by applications and “app-lets” (see below).

Linking
Among the key features to be found in document-centered interfaces are linking, “drag
& drop” capability, activation and location transparency. Linking refers to the ability to
place pointers to external data inside documents. (A related term is embedding.) The

11The Gilbane Report January/February 1994

OLE 1.0:
Microsoft has used OLE 1.0 in its own
applications on both Windows and
Macintosh platforms. Microsoft Word for
Windows ships with a number of app-lets:

for equations, graphing, drawing, “word art,” etc. A number of other vendors support OLE on
Windows; any of their applications present on your machine will show up as OLE servers in the
appropriate dialogs.

OLE 2.0:
Vendors agree that they will want to incorporate OLE 2.0 into their applications, but it is a big job
to move from the application-centered to the document-centered approach. Most vendors are
planning to incorporate OLE 2.0 functionality into upcoming major releases— that is, they are not
rushing out special releases to support OLE. One reason for this go-slow approach is that there
have been few target clients in which OLE-2.0-aware objects can be embedded. Among the
recently available applications are Microsoft Excel 5.0 and Word 6.0, which are components of
Microsoft’s new Office bundle. Vendors believe they will not see increasing demand from their
users for OLE 2.0 functionality— that is, for document-centeredness— until the well into 1994.

A more basic factor inhibiting the demand for OLE 2.0 is the lack of operating-system support for
distributed objects. OLE 2.0 has no provisions for naming objects in a location-independent way,
so a link can be broken if a user moves or renames a file. Distributed-object support is promised for
Cairo (also known as Windows NT 2.0), slated to be available late in 1995.

Publish & Subscribe:
A good number of applications support P&S. Support for the capability is often a check-box item in
Macintosh product reviews. But there is little evidence that users make use of it even though it
works just fine. It is thought to be somewhat confusing, especially given that the major Microsoft
applications support both P&S and linking/embedding (using DDE) off the same menus.

ARE PEOPLE USING
THESE FEATURES?

continued on next page

linked part inside the document can behave in a static or a dynamic fashion—that is, it
may change when the source data changes, or it may not.4

To be useful across applications, linking mechanisms must be defined and supported by
an operating system. Once this support is in place, applications can link to documents (or
pieces of documents) that were created by other applications, as well as to data and
documents that these applications created and control themselves.

Finally, if linking and embedding capabilities are to be useful across the boundaries of
platform and operating system, they must be based on widely adopted industry standards.
A single application vendor can provide a mechanism by which its own applications can
share data, but unless the mechanism becomes a standard other vendors cannot or will
not use it.

“Drag & Drop”
Including part of one document in another should be natural and easy. “Dragging” a part
from one document and “dropping” it in another is a more intuitive way of accom-
plishing this than cutting, copying, and pasting objects via an electronic “clipboard.”

Many applications already support “drag & drop” between their own documents. In a
document-centered world, however, you should be able to embed anything in anything
else without restriction. Imagine dragging an icon from a desktop into a document as a
quick way of including an entire file. Or dragging the icon for a directory as shorthand for
including multiple files.

Activation
The code that provides access to a linked or embedded object becomes active when the
user selects that object within a document. In the Macintosh or Windows worlds today
this might mean launching another application. In the document-centered world to come
the activation of a part would be both faster and more subtle.

The Microsoft (OLE 2.0) activation model is strictly hierarchical. In order to activate a
graph imbedded in a chart in a text document, you must first activate the chart, then the
graph. In the Apple (OpenDoc) activation model you could go directly to the graph and
activate it.

Location transparency
A user-friendly, document-centered environment would shield the user from being
concerned about files as well as applications. Documents, or parts of documents, could be
stored in any way (or in any location) convenient to the operating system, provided that
the user is given the means to find them as needed. Once assembled, each document
would maintain its integrity even if the files that ultimately comprise it were moved or
renamed.

All document-management, storage, and workflow solutions available today provide some
degree of location transparency, if only an indexed method of finding files. Operating-
system vendors such as Taligent and Novell, however, are busily incorporating location-
transparency and even workflow features into their OS’s.

“App-lets”
An especially exciting hybrid of OOP and the DCUI is the app-let: a mini-application that
users can “plug into” other software applications.

12The Gilbane Report January/February 1994

4Some systems refer to cold, warm, and hot links. A cold link is unchanging. A warm link provides a warning if source data
changes, allowing the user to update the linked part. A hot link updates the linked data automatically.

“… if linking

and embedding

capabilities are

to be useful

across the

boundaries of

platform and

operating

system, they

must be based

on widely

adopted

industry

standards.”

The Gilbane Report January/February 1994

In the future world of document-centered computing, applications will be considerably
smaller and simpler than they are today. Instead of buying mega-applications designed
to serve all needs of all users, these small, plug-in modules can be installed to perform
focused tasks in any application that needs the services they provide.

A word processor, for example, might provide only the basic editing and typographical
functions, search-and-replace, and so on. Small add-on app-lets could be used as needed
for spell checking, grammar checking, dictionary, thesaurus, drawing, charting, equation
editing, etc. These app-lets could be used in the context of any document (and any
application), so you would not need to carry around the baggage (in disk space and
memory) of unneeded features. And the interface to your charting package, for example,
would be the same wherever you used it.

App-lets are small pieces of code and probably won’t cost much, so users should not
exhibit great price resistance. Vendors do not yet, however, have a good business model
for making money from app-let development and distribution. New pricing strategies
and new distribution channels will have to evolve.5

Implications for the Future
Standards: OMG and CORBA
It would be better if the application could somehow “automagically” find all the
resources it needs at runtime, without having to care which directory they are in or if
some user moved or renamed them. One solution to this problem is provided by the
object request brokers standardized by the CORBA specification developed by the Object
Management Group (OMG).

Beginning in 1990 the OMG has been encouraging industry players to agree on standards
governing the operation of objects in distributed-object-computing environments. Unlike
the Open Software Foundation, OMG does not develop technology; instead it
coordinates the adoption of standards in important areas of object computing. Its first
influential effort was the Common Request Broker Architecture specification, commonly
referred to as CORBA. It laid down the ways objects could communicate in a distributed
environment, with communication mediated by an object request broker (ORB).

An ORB can help an object find another object it wants to use (for example, the code
that knows how to do spell-checking), no matter where it may be located on a network.
The ORB can pass messages between cooperating objects. And it can provide information
about what interfaces an object supports.

Version 1 of the CORBA specification did not cover all the areas necessary to implement
a functioning ORB. As a result vendors could and did implement compliant ORBs that
nonetheless could not talk one to the other. The current version (1.2) of the spec
addresses some of the shortcomings; the remaining ones are resolved in the 2.0 spec,
now in draft form.6

Implications for Software Vendors
Everyone who makes a living in the computer industry will be affected by the trends
outlined here. For application developers and IS managers the questions will be familiar
ones: what companies and technologies will emerge as winners? What is the right point

13

5Network licensing technology provides one model that might be useful here—although it was developed to solve simpler
problems in a simpler environment than the distributed object computing paradigm toward which the industry is evolving.
Shareware and trial/demo applications might yield useful insights. (Perhaps the industry needs to evolve a pay-per-run scheme
similar to cable TV’s pay-per-view?)
6At recent ObjectWorld conference, several different (and competing) vendors demonstrated ORBs communicating together
successfully.

“Everyone who

makes a living

in the computer

industry will be

affected by the

trends outlined

here.”

at which to shift development effort to a new platform? How much compatibility will
there be for existing applications in the new operating environments?

Programmers will certainly have to learn new tools and new ways of working. The good
news is that, once they have done so, productivity should soar, and cross-platform
development should become much easier.

As noted above, the move to document-centered interfaces promises to upset established
models for application packaging, pricing, distribution, and support. The coming changes
could prove beneficial for vendors who are among the first in their markets to figure out
how best to compete in this new realm of app-lets and distributed applications.

Concurrent with the trend to object orientation has been the migration into operating
systems of functions once handled by standalone applications. Object technology provides
tools that OS vendors can use to execute such migrations in a win-win partnership with
independent software vendors (ISVs) who develop for that environment; but it cannot
guarantee that the OS vendors will use these tools.

An old example is font technology. One could argue that font handling belongs in the
operating system, and that Apple and Microsoft did the world a favor by implementing
TrueType. But the action had broad ramifications in the publishing world. It forced Adobe
to publish the PostScript Type 1 font specification, which had been held proprietary. And
it led to upheaval in the markets for type fonts.

A more recent example, color management, provides a better story of OS-/ISV
cooperation. Apple provided a simple form of color management in its operating system,
and published the interfaces that an ISV expert in color science could use to replace the
simple solution with a more comprehensive one. A cleanly defined object interface makes
it easier to engineer this sort of mutually beneficial outcome as the OS vendor makes
formerly arcane functions available to all.

Word Processing and Publishing Systems

Much of the expertise that used to be the domain of typesetting, word-processing, and
graphics-arts application vendors has for many years been migrating down the food chain
to end-users. Expect this trend to accelerate. Before long accessible and high-quality
object-based composition services will be available from modern operating systems.

Apple has been developing—but has not yet released—QuickDraw GX, a graphics
subsystem that incorporates significant composition expertise, including support for
ligatures, expert kerning, even hung punctuation. QuickDraw GX embodies a
sophisticated imaging model and supports high-level graphics functions as well. When
released later this year, it will enable companies to quickly prototype and develop
applications with integrated text, image, drawing, and/or design capabilities.7

Other functions less central to the traditional expertise of these industries—spell-
checking, grammar-checking, thesaurus, equation, perhaps table handling—will become
app-lets once widely adopted document-interface technologies are in use. The current
vendors of the mega-applications can win by supplying these app-lets, sooner and better
than the small players do.

For now it looks as if higher-level document functions are safer from being swallowed into
the operating system. Vendors whose value-add is in page layout, “smart” document
systems, and document-structure editors should less to fear.

14The Gilbane Report January/February 1994

7Apple says all its new software will be cross-platform, supporting at least Windows systems as well as the Macintosh.

“For now it

looks as if higher-

level document

functions are

safer from being

swallowed into

the operating

system.”

Document Management Vendors

Some functions common to document-management systems—such as the ability to
locate documents by keyword—are also becoming more widely available as file systems
become richer.

Document-management functions are included in OpenDoc, and are rumored to be in
Taligent Pink (see box, “Leaders in the Move to OOP”). Novell plans to provide many
traditional document- and storage-management functions as extensions to the NetWare
OS. Novell has hinted at supplying workflow functions as well.

Implications for IS
As we pointed out earlier, document-centered interfaces and object-oriented environ-
ments and tools are converging; both developers and users will be manipulating
document objects. The difference is that developers will be concerned with creating object
methods and defining the bounds of the environment, while users will pick and choose the
object methods that are most suited to the information content they need to create or use.
(One can almost use “document” and “object” interchangeably in this context.)

Documents consist of objects—often complex objects created in different applications.
Even our Report contains illustrations, charts, and other text objects imported from (or
linked to) other applications. The process of assembling all these document objects is far
from ideal. It is disruptive and frustrating to interrupt a thought process to open up another
application, make a small change and then re-import, re-link, or re-copy and paste. A well-
designed document oriented interface can make this process largely transparent.

The benefits to users of document systems are clear:

• ease of learning and use—the user interface is integrated and consistent
• increased productivity—no lost time moving back and forth between multiple files and

different applications
• more accurate information in documents—it will be easier to ensure the information is

up-to-date.

Is There A Downside?

Some are bound to have concerns about putting a variety of tools in front of a user who
may lack the requisite skills to use them. A writer can easily get distracted with illustration
or spreadsheet tools even though there is an artist responsible for creating graphics and
an accountant in charge of the price list.

While we experience the temptation to get sidetracked by sexy features as much as
anyone, we do not think this concern should change anyone’s move toward a document-
centered interface. This is a management problem, not something to be fixed by building
limitations into products. It is not easy to sell products based on their lack of features.
Products only need to provide management tools to facilitate users implementing
restrictions where appropriate.

Also, this separation of skills is precisely why a document-centered interface is important.
If authors and illustrators are collaborating on a document, you want them to do just
that; collaborate on the document, not on different documents that then must be
merged together.

How Will This Play Out?

All areas of document system technology (authoring, document management, etc.) are
moving in this direction, so it is important to start thinking in these terms when planning

15The Gilbane Report January/February 1994

“… this

separation of

skills is precisely

why a document-

centered

interface is

important.”

16The Gilbane Report January/February 1994

your information management strategies and evaluating products. Pay attention to how
suppliers are planning to meet this need, and how they intend to position themselves to
stay ahead in the changing competitive environment.

It is too early to tell whether one of the document oriented operating environments
being developed will become dominant. It is not even clear at this point exactly what
they will look like. The current battle between OpenDoc and OLE is valuable because it
will expose both approaches to the level of scrutiny such an important ingredient of
document computing needs.

It is our job, and yours, to state, loud and clear, what our needs are. As most of you are
painfully aware, most applications and features of operating systems have been sufficient
for simple documents (memos, etc.), but woefully under-powered for more complex
documents, such as integrated technical information.

A document oriented interface is just
that— an interface. By itself it will not solve

your document management problems. There has to be a level of robustness behind the
interface to deal with the kinds of objects that need to go into your documents. For
example, a simple linking scheme might allow you to automatically update a spreadsheet
in a memo—if both reside in the same folder or directory on your disk. The same
approach may break down, however, when you need to incorporate information into
documents from a CAD file or from a relational database on a wide area network. There is
always the risk of failing to solve a critical business problem by implementing an
underpowered solution.

Application suppliers must adjust to a rapidly changing business model and competitive
environment at the same time. Not all of them will manage this successfully.

A real risk is that the emerging operating environments will not provide sufficient
interoperability. This would make life expensive and complicated for the vast majority of
businesses who need, and want, multiple environments. (Of course, what makes most
sense for the consumer is not always what drives campaigns for market dominance.
Much more is at stake here for vendors.)

Although most “experts” agree that document-centered interfaces are “better” than
file–or application–based interfaces, it is always a challenge to convince users to abandon
older interfaces with which they are comfortable (or at least familiar). Even changes for
the better can be costly if made abruptly without careful planning.

Document-centered interfaces and object-
oriented operating environments are
coming, and they will be closely linked.
Document-centered interfaces and

application are already available, as is some middleware-level support.

Most important today is to recognize this trend and prepare to address it in future
document management strategies. Any such strategy should include a document re-
engineering exercise that is bound to result in a better match with business processes.

It was probably never a good idea to force information management strategies to fit into
the arbitrary restrictions of file and applications, although we have had little choice when
it came time to implement these strategies. While there may still be some implemen-
tation limitations, the time has come to seriously consider the impact of this trend on
your long-term information-management architectures and methodology.

CONCLUSIONS AND
RECOMMENDATIONS

RISKS AND COSTS

In addition to incorporating this trend into your planning, you should:

• Review the technology you already have purchased (and paid for). In some cases,
existing linking technology can provide substantial benefits, even if only partially
implemented—and many companies have simply not paid any attention to it yet.

• Study what other current technology can do. Many new and established products have
already begun to add the ability to manage document components as objects, even if
distributed over a local- or wide-area network.

• Do not fully commit yourself just yet to a particular object-oriented operating
environment. There is no reason to avoid making tentative plans, and to start a dialog
with platform suppliers to find out whether their technology meets your needs. But
assume that the specifications of these environments will change, and implementation
schedules are bound to change, also.

• Make sure your supplier plans to provide an environment that is capable of dealing
with the complexity of your documents. Educate suppliers now about the complexity of
your future requirements and plans.

• Protect your investment in information and existing infrastructure. You cannot be sure
that the interoperability you need will be supported by the competing environments,
especially at first. The platform suppliers all seem to be interested in supporting certain
critical vendor independent standards like SGML8 and CORBA — you should forcefully
encourage them to do so.

Keith Dawson

17The Gilbane Report January/February 1994

8 The role of SGML in object-oriented environments with document-centric interfaces is surely critical, e.g., as a vendor neutral
way to interchange document structures and objects or parts, and protect user investment. We will cover this in a future issue
when we look more closely at OpenDoc and OLE.

“You cannot be

sure that the

interoperability

you need will be

supported by the

competing

environments…”

18The Gilbane Report January/February 1994

9Microsoft has recently become considerably more active in the OMG, and may intend to push for standardization of OLE through OMG’s
Common Facilities Task Force.

The movement toward object-oriented
programming on the desktop is being
driven largely at the operating system
level. Microsoft has the strongest cards,
but two consortia—both powered by both

Apple and IBM—are strong enough to mount a serious challenge.

The Big Three

Microsoft: Chicago and Cairo

Chicago is the development name for Windows 4.0. This operating system will be the first
mainstream Windows implementation that does not rest on DOS; instead, it is built atop a true 32-
bit multithreaded, multi-tasking virtual-memory operating system. Chicago is in early testing now
and is scheduled to ship some time in 1994.

Architecturally Chicago is a cross between OS/2 2.1 and NT. Like OS/2 it is optimized for Intel-
architecture CPUs and is not portable to symmetric multiprocessors or RISC machines. Like NT it is
built on a layered, micro-kernel architecture model. (Some layers, in fact, are identical to the ones
used in NT.)

Chicago uses OLE 2.0 to implement a Macintosh-like desktop that, like Apple’s Finder, combines
the functions of the current Windows File Manager and Program Manager. But this desktop will be
a full OLE 2.0 application. It will cooperate with all other applications that speak OLE 2.0 and its
functions will be fully scriptable from the Visual Basic language.

Cairo is the development name for Windows NT 2.0. Its scheduled availability is late in 1995. By
this time Microsoft plans to introduce network awareness into its OLE technology, and the first use
of such a feature could appear in the context of Cairo. Whether OLE will also move towards
location independence— for example by playing in the CORBA-compliant domain— has not been
announced.9

OpenDoc Consortium: OpenDoc

The OpenDoc Consortium’s founding members include Apple, IBM, Borland, Novell, Xerox, Sun,
Oracle, and WordPerfect. Membership is open to all, and OpenDoc source code will be freely
available to all.

OpenDoc represents technology mostly from Apple, with contributions by IBM and others, that
previously went under Apple code names Amber, Exemplar, and Jedi.

One industry observer described OpenDoc as an “OLE 2.0 on steroids.” OpenDoc provides a way
to encapsulate OLE 2.0 objects, so that it can interoperate in a world containing the competing
standard. Like OLE 2.0, OpenDoc features cross-platform availability and a scripting language
(OpenDoc’s roster of platforms is longer). OpenDoc goes beyond OLE 2.0 by providing document
management, a consistent user interface, and certification of vendor implementations by an
independent laboratory (the Component Integration Laboratory). OpenDoc also allows document
parts to be any desired shape, while OLE 2.0 mandates rectangular parts. Most importantly,
OpenDoc is network-aware and will support the CORBA spec for object communication.

Release of OpenDoc 1.0 is scheduled for mid-1994. “Release” in this context does not mean
commercial availability; it means instead that final code is available to vendors to use in commercial
products. Off-the-shelf products based on OpenDoc will probably appear by the end of 1994 from
IBM (on AIX and OS/2 platforms) and from Apple.

Novell and WordPerfect are working on an OpenDoc implementation for the Intel/Windows platform.

LEADERS IN THE MOVE
TO OOP

Taligent: Pink

Taligent was started in 1992 with funding, staffing, and technology from Apple and IBM. Recently
Hewlett Packard invested in a minority stake in the venture. Taligent’s work on the operating
system code-named Pink represents by far the most ambitious object-oriented operating system of
any of those discussed here, and also the one that is farthest out in time. The company has
rethought everything about the operating system and user environment in object terms.

In order to meet the competitive challenge of Microsoft’s Cairo, Taligent plans to release some of
its object technology in 1994 to its sponsors and to early-adopter developers. Delivery of the full
operating environment to Apple, IBM, and HP may not happen until 1995. Taligent will not itself
ship any commercial products; it is up to the sponsoring companies to incorporate the Pink
technology into their product lines. IBM’s announced plans for doing so are considerably clearer than
Apple’s or HP’s. According to those plans IBM will be shipping products based on Pink in 1995.

Industry analysts who have seen the Pink technology believe that Taligent’s from-scratch approach
will result in a robust operating environment that could be in use well into the next century.

The Open-Systems Vendors

Digital: Object Broker

Digital delivered an Object Request Broker in 1991 before the OMG finalized the CORBA 1.0 spec.
As a result Object Broker is not quite CORBA-compliant.

IBM: SOM / DSOM

IBM’s object broker is CORBA-compliant and is based on IBM’s System Object Model or SOM. This
model was extended with network awareness; the result, Distributed SOM or DSOM, began
shipping to OS/2 and AIX system developers in 4Q’93.

Hewlett Packard: ORB Plus

This CORBA-compliant ORB is scheduled to ship to system developers in mid-1994. It will include
an Interface Repository, which will perforce be non-standard because OMG has not settled on a
standard yet in this area.

Sun Microsystems: Project DOE

DOE stands for Distributed Objects Everywhere. This technology, being developed by the SunSoft
subsidiary, is scheduled to ship to system developers by the end of 1994. The schedule has been
called into question with the planned integration of NextStep technology.

Others

AT&T: PenPoint

PenPoint was developed by Go Corp. in the late 1980’s for use on pen-based computers. It was
available to developers in 1990.

It was originally thought that PenPoint would run on hardware from a number of vendors. But
hardware development of pen computers lagged, and the market for the technology has not
developed at the rate first anticipated. In 1993 Go Corp. was acquired by AT&T. Future
deployment of PenPoint will therefore be limited to the hardware that AT&T produces (the
Hobbit).

It is worth noting that although PenPoint sports a thoroughly document-centered interface, it is
not necessarily intuitive to use. The user must internalize a number of gestures—expressive
motions with the pen—and learn which to use in what contexts.

19The Gilbane Report January/February 1994

20The Gilbane Report January/February 1994

NeXT Inc.: NextStep

The NextStep environment is the most complete example today of an object-oriented operating
system and development platform. But its interface is the traditional desktop-based, mouse-and-
icon metaphor that was commercialized by Apple and pioneered by Xerox PARC (with roots
going back to the SRI Augmentation Research Center of the 1960’s).

NextStep originally ran on NeXT’s own hardware, but in 1993 the company got out of the
hardware business and announced a NextStep port to the Intel 80x86 environment. The
Sun/NeXT deal assures that the NextStep environment will run under Sun’s Solaris.

HyperDesk: ORBIX

HyperDesk was formed from technology developed by Data General. DG abandoned its large,
ambitious program to develop an open platform for cooperating object development and sold
the technology to Ascii Corp., which formed HyperDesk in 1991. The HyperDesk technology was
central to the standards submission that resulted in the CORBA 1.0 spec.

Novell / HyperDesk

Novell and HyperDesk are working jointly on an ORB that will run in the Netware 3.x and 4.x
environments as well as Unixware.

Because of the synergy between the
Documation Conference and the topics
covered in this report we will provide
regular updates on the conference
program and exposition.

Program Update
A program update was mailed this month.
The good news is that there have been
very few changes, and those have been
additions to the program. We have already
received dozens of proposals for speaking at

next years conference. While we won’t be making any decisions about next years speakers
for a few more months, it wouldn’t hurt to let us know if you have an interesting idea.

Exposition Update
So far close to 70 companies representing the leading suppliers of document
management and document computing products and services have reserved booth
space. We are expecting a few last minute entries as well. Even if you can’t attend the
conference you won’t want to miss the exposition.

New Product Announcements
There are some exciting new products being announced at Documation. We can’t tell
you about them in advance, but you won’t want to miss them. Many members of the
press will be on hand, however, just in case you miss something while attending sessions.

User Group Meetings
The SGML Open Consortium will be holding a full day of meetings on Friday in addition
to the activities they have planned during the conference. In addition EPSIG, The
Southern California CALS User Group, the International SGML Users Group, and others
are planning meetings for Friday.

Travel
Because of the highway damage due to last months earthquake, we recommend that you
leave a little extra time for getting around. The roads between the airport and Century
City were unaffected, however they have to handle an extra load for awhile. If you take a
taxi from the airport, you can rent cars at the hotel.

We hope to see you all there!

UPDATE

21The Gilbane Report January/February 1994

M A T I O N ‘ 9 4

The Gilbane Report January/February 199422

Below is a selection of key events covering
open information and document system
issues. There are many other conferences

and shows covering related topics. We will attempt to keep this list to those events that focus on
areas most directly related to the areas covered in our report.

Documation ’94. February 21-25, 1994, Los Angeles CA. The annual international event for
document management applications and document computing. Call (703) 519-8160 or (617)
643-8855, Fax (703) 548-2867 or (617) 648-0678.

Intermedia. March 1-3, 1994. San Jose, CA. Multimedia and CD-ROM. Conference and Exhibition.
Call (203) 352-8240, Fax (214) 245-8700.

Seybold Seminars ’94. March 22-25, 1994. Boston, MA. The annual gathering of the computer
publishing elite. Conference and Exhibition. Call (310) 457-8500, Fax (310) 457-8510.

OnLine Publishing ’94. April 10-13, New York, NY. GCA conference on online publishing issues.
Call (703) 519-8160, Fax (703) 548-2867.

AIIM. April 18-21, 1994, New York, NY. AIIM’s annual show and conference focusing on imaging
and storage and retrieval. Call (301) 587-8202.

Pen & Portable Computing. May 2-5, 1994, Boston, MA. Well, Documents need to be portable
don’t they? Sponsored by Boston University. Call (800) 733-3593, ext. 255, FAX (508) 649-2162.

EDD ’94. May 10-12, 1994, Somerset, NJ. Bellcore’s forum for discussion of issues relating to the
exchange of technical information in electronic form. Call (201)829-4135, Fax (201)829-5883.

SGML Europe. May 15-19, 1994, Montreux, Switzerland. The European counterpart to the SGML
’93 conference in the U.S. Call (703) 519-8160, Fax (703) 548-2867.

AIA Automated Technical Data Symposium & Exhibition. May 16-18, St. Louis, MO. The 9th
biennial gathering of the Aerospace Industries Association group focused on managing technical data.
This year’s theme: Interactive Electronic Environments. Call (202) 371-8435, Fax (202) 371-8470.

Seybold Paris. June 8-10, 1994. Paris, France. Seybold’s main European event. Conference and
Exhibition. Call +44 (0)323 410561 , Fax +44 (0)323 410279.

Infobase ’94. June 28-30, 1994. Salt Lake City, UT. Folio User Conference. Call (801) 344-3671, or
(801) 344 3672.

International Conference on HyTime. July 24-27, 1994, Vancouver, BC Canada. New conference
exploring applications of the ISO standard. Call (703) 519-8160, Fax (703) 548-2867.

CALS Europe ’94. September 14-16, 1994, Paris, France. The annual pan-European conference on
CALS technology and applications. Call (703) 578-0301 or +49 30 882 6656, Fax (703) 578-3386
or +49 30 883 8811.

CALENDAR OF EVENTS

23The Gilbane Report January/February 1994

Vol. 1, No. 1.
What The Report Will Cover & Why —
An Introduction To “Open Document
Systems”, And A Description Of The
Report’s Objectives.

Imaging, Document & Information Management Systems — What’s The Difference, And How
Do You Know What You Need?

Vol. 1, No. 2.
SGML Open — Why SGML And Why A Consortium?

Document Query Languages — Why Is It So Hard To Ask A Simple Question?

Vol. 1, No. 3.
Document Management & Databases — What’s The Relationship?

Vol. 1, No. 4.
Electronic Delivery — What Are The Implementation Issues For Corporate Applications?

Vol. 1, No. 5.

Multimedia Rights & Wrongs — What IS Managers Should Know About Copyrights In The Age
Of Multimedia

TOPICS COVERED IN PREVIOUS
ISSUES

The subjects listed below are some of the areas
we will be covering, in no particular order. If
you have an opinion about which topics you
would like to see added or covered sooner
rather than later, let us know.

Office Workflow Systems — Can They Handle Strategic Information, Or Are They For Casual Or
Ad Hoc Use Only?

Documents As Interfaces — Is This An Option For Today? What Will The Future Bring?

SGML & Presentation Interchange — What Standards Are Available Or Appropriate? (DSSSL,
OS/FOSI, HyTime, ODA, etc.)

Authoring Systems — Do You Need Different Kinds For Different Media?

“Middleware” — What Is This Layer Of Software In Between Operating Systems And Applications?
Is It The New Proprietary Trap? What Does It Mean To Your Decisions About Document Systems?

ISO 9000 — What Kind Of Document Management System Do You Need To Meet This Quality
System Standard?

The Airframe And Airline Industry’s Strategy For Sharing Product Information — What Can
You Learn From It?

New Drug Applications — What Document System Strategies Make Sense For The
Pharmaceutical Industry?

Object & Relational Databases — Which Approach Is More Suited To Your Document
Systems Needs?

Compound Document Architectures — Why Do We Need Them? Who Will Define Them? Will
They Do What We Expect?

SGML Versus ODA — How Do They Differ? Is There A Reason To Have Both? What Can They Do?
Which Approach Is Right For The Future?

TOPICS TO BE COVERED IN
FUTURE ISSUES

© 1993 Publishing Technology Management, Inc. All rights reserved. No material in this publication may be reproduced without written permission. To request
reprints or permission to distribute call 617-643-8855.

The Gilbane Report and PTM are registered trademarks of Publishing Technology Management, Inc. Product, technology and service names are trademarks or
service marks of their respective owners.

The Gilbane Report on Open Information & Document Systems is published 6 times a year.

The Gilbane Report is an independent publication offering objective analysis of technology and business issues. The report does not provide advertising, product
reviews, testing or vendor recommendations. We do discuss particular pieces of product technology that are appropriate to the topic under analysis, and welcome
product information and input from vendors.

Letters to the editor are encouraged and will be answered. Mail to Editor, The Gilbane Report, Publishing Technology Management, Inc., 46 Lewis Avenue, Arlington,
MA 02174-3206, or fgilbane@world.std.com or APPLELINK:PTM

ISSN 1067-8719

Apple Computer
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Aldus Corporation
411 First Avenue South
Seattle, WA 98104
(206) 622-5500

ArborText
1000 Victors Way #400
Ann Arbor, MI 48108
(313) 996 3566

Component Integration Laboratories
688 Fourth Avenue
San Francisco, CA 94118
(415) 750-8352

Datalogics, Inc.
441 West Huron St.
Chicago, IL 60610
(312) 266-3125

Frame Technology
1010 Rincon Circle
San Jose, CA 95131
(408) 433-3311

IBM Corporation
Old Orchard Road
Armonk, N.Y. 10504
(914) 765-1900

Interleaf
Prospect Place, 9 Hillside Ave.
Waltham, MA 02154
(617) 290-0710

Microsoft Corporation
One Microsoft Way
Redmond, WA
(206) 882-8080

Oberon Software
1 Cambridge Center
Cambridge, MA 02142
(617) 494-0990

Object Management Group
429 Old Connecticut Path
Framingham, MA 01701
(508) 820-4300

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
(415) 506-7000

SoftQuad, Inc.
56 Aberfoyle Crescent, Ste 810
Toronto, Ontario M8X 2W4
Canada
(416) 239-4801

SunSoft
2550 Garcia Avenue
Mountain View, CA 94043
(415) 960-1300

Xerox
XSoft Division
10200 Willow Creek Rd.
San Diego, CA
(619) 695-7700

Xyvision, Inc.
101 Edgewater Dr.
Wakefield, MA 01880
(617) 254-4100

WordPerfect
155 North Technology Way
Orem, UT 84057
(801) 228-9930

Order Form
o Please start my subscription to: The Gilbane Report on Open Information & Document Systems

(6 issues). Back issues available for $45. each.
U.S.A.: $225 Canada: $232 Foreign: $242

Additional copies and site licenses are available at reduced rates. Call for information.

Please send me additional o Consulting Services o Special Reports
information on: o On-site CALS Strategic Planning Seminar

o Document Managment & Electronic Delivery Seminars

o My check for $ ___________ is enclosed o Please bill me
o Please charge my credit card o MasterCard o Visa o American Express

Name as it appears on card ______________________________________ Number ___________________

Signature __ Expiration date______________
Checks from Canada and elsewhere outside the U.S. should be made payable in U.S. dollars. Funds may be transferred directly to our bank: Baybank
Boston NA, 175 Federal Street, Boston MA 02110, S.W. code BAYBUS33, into the account of Publishing Technology Management, Inc., number 1444-89-
63. Please be sure to identify the name of the subscriber and the nature of the order if funds are transferred bank-to-bank.

Name __ Title_____________________________________

Company __ Department______________________________

Address___

City ______________________________________ State ___________ Zip______________ Country _________

Telephone __________________________________ Fax _________________________ Email _______________

Mail or fax this form to: Publishing Technology Management, Inc., 46 Lewis Avenue, Arlington MA 02174-3206
Fax: (617) 648-0678 • To order by phone call: (617) 643-8855

HOW TO FIND OUT MORE ABOUT
COMPANIES MENTIONED IN THIS
ISSUE

